CyDotian’s manual

An algorithm for identifying internal repeats of nucleic acid and amino acid sequences.

CyDotian—Chen Yan DOTe on magiclAN

Authors Huilong Chen

Email chenhuilong131@163.com

Overview

CyDotian algorithm is a dynamic programming algorithm, which can identify all internal repeats of
the sequence itself that allow mutation. In order to achieve efficient output of the results, we used
C, the fastest underlying computer language available, to implement the algorithm and allow it to
be compiled into an executable program. Downstream analysis tools are then written in Python,
the most popular language for data processing and visualisation. These downstream analysis
tools include processing the location and number of repeat segments, plotting dotplots, plotting
depth plots, calculating repetition density and outputting specific repeat segment comparison
details. All are batch processed and exported, which is extremely user-friendly. Users can suggest
and optimise the development of all codes. Moreover, due to the applicability of the CyDotian
algorithm, it can also be used to identify similarity segments between two different sequences
that allow for mutations. In addition, by replacing the U in the RNA sequence with a T, CyDotian
can be used to find all the reverse complementary sequences, helping to predict the stem-loop
structure of the RNA molecule.

Usage information is built into the program. To display usage on the screen, the user simply runs
the program by specifying the -h/--help parameter:

$ python3 program_name.py -h/--help (for Python scripts)

mailto:chenhuilong131@163.com
af://n0
af://n10

The following is the list of executable programs:
bpRepeatScan (used for nucleic acid sequences)
aaRepeatScan (used for amino acid sequences)

slidingWindow (used for used for nucleic acid and amino acid sequences via sliding window
method)

Parameter configuration file
CyDotian.config (used for CyDotian algorithm)
CyDotian_exact_match.config (used for MUMmer's repeat-match algorithm)

CyDotian_sliding_window.config (used for sliding window algorithm)

Batch processing programs:

Tool 1. 1.0_batch_check_sequence.py

Tool 2. 1.1_batch_run_CyDotian.py

Tool 3. 1.2_batch_run_draw_dotplot.py

Tool 4. 1.3_batch_run_draw_depth_plot.py

Tool 5. 1.4_batch_run_output_repeat_density.py

Tool 6. 1.5_batch_extract_repeat_sequences.py

Tool 7. 1.6_Extract_the_corresponding_results_by_name.py

Tool 8. 1.7_batch_run_CyDotian_in_pairwise_comparison_mode.py

Tool 9. 1.8_batch_extract_repeat_sequences_in_pairwise_comparison_mode.py
Tool 10. 2.1_batch_run_CyDotian_exact_match.py

Tool 11. 2.7_batch_run_CyDotian_exact_match_in_pairwise_comparison_mode.py
Tool 12. 3.1_batch_run_CyDotian_sliding_window.py

Tool 13. 3.2_batch_run_CyDotian_sliding_window_in_pairwise_comparison_mode.py

Tool 14. 3.3_batch_run_draw_dotplot_sliding_window.py

Citation:

Chen, H., Xu, G., Ge, W., Feng, F., Lin, Y., Guo, C., Jing, Q., Wang, X., Nussio, L., Wang, X., & Yang, F.
(2024). CyDotian: a versatile toolkit for identification of intragenic repeat sequences. Molecular
Horticulture 4, 37. https://doi.org/10.1186/s43897-024-00113-3

Documentation

af://n16
af://n21
af://n26
af://n42
https://doi.org/10.1186/s43897-024-00113-3
af://n44

The online documentation is located at the GitHub Wiki.

Dependencies

GCC and Python3

The CyDotian toolkit code can be easily ported to Windows and Mac OS systems with a few
simple modifications. However, we recommend that the CyDotian toolkit should be run on
Linux/Unix servers due to the amount of memory available.

Installation

Open a terminal and follow the steps below to enter the command.

$ mkdir ~/CyDotian # or any directory of your choice.

$ cd ~/CyDotian

Manually download the "CyDotian" package

O Search or jump to... Pull requests Issues Marketplace Explore

& ChenHuilong1223 / CyDotian ' Public X Pin @Unwatch 1

<> Code (@ Issues §7 Pullrequests (® Actions [Projects [wiki @ Security |~ Insights &3 Settings

¥ main ~ ¥ 1branch 6 tags Go to file Add file ~

R
1.Click
Clone < ®

HTTPS SSH GitHub CLI

(4 ChenHuilong1223 Add files via upload

M data Amino_acid Add files via upload

I8 data DNA Add files via upload https://github.com/ChenHuilong1223/CyDoti: |'_|,:|
. . Use Git heckout with SVN using th b URL.

[1.0_batch_check_sequence.py Add files via upload s bitoreherioutw Hsing thewe

[% 1.1_batch_run_CyDotian.py Add files via upload [¥) Open with GitHub Desktop

3 1.2_batch_run_draw_dotplot.py Add files via upload

2.Download
) Download ZIP - —J

3 1.3_batch_run_draw_depth_plot.py Add files via upload

Put "CyDotian.zip" into the newly created folder "CyDotian". Then enter the following
command.

$ chmod 775 cyDotian-main.zip
$ unzip Cybotian-main.zip

$ chmod -R 775 CyDotian-main
$ cd cybotian-main

$ make

https://github.com/ChenHuilong1223/CyDotian/wiki
af://n46
af://n49
af://n50
https://github.com/ChenHuilong1223/CyDotian
af://n52
af://n54

Or, if your server is available, you can use the following command. Instead of downloading
it manually.

$ git clone https://github.com/ChenHuilongl223/Cybotian.git
$ cd cybotian

$ make

If you see the following result output in the terminal, the installation is successful.
gcc -g -std=c99 bpRepeatScan.c -o bpRepeatScan
gcc -g -std=c99 aaRepeatScan.c -0 aaRepeatScan

gcc -g -std=c99 slidingWindow.c -o slidingWindow

Tutorial

Preparation

File format: fasta format

>namel

sequencel # Sequences can be displayed on multiple lines or on one Tine.

>name?2

sequence?2

If you want to analyse nucleic acid sequences, create a folder for nucleic acid sequences in the
directory where the program is now located. If you want to analyse amino acid sequences, create
a folder for amino acid sequences in the directory where the program is located.

We recommend that you include the word nucleic acid or amino acid in the name of the folder
to make it easier to distinguish between sequence types. This is because the CyDotian toolkit
does not allow batch analysis with both nucleic acid and amino acid sequences.

In the CyDotian toolkit, all file or folder paths can be either absolute or relative, but cannot have
the character "/" at the end of the path. For the output folder path, there is no need to create it in
advance, CyDotian will create it automatically if the destination folder path does not exist.

Here we use the analysis of DNA sequences as an example:

1. Create a folder in the "CyDotian-main" directory
$ cd ~/Cybotian/CyDotian-main/

$ mkdir test_DNA

af://n56
af://n58
af://n62
af://n63
af://n72

2. Place the DNA sequences to be analysed (in fasta format) into the created folder

User Notice:

The "test_DNA" folder can contain multiple fasta files, and a fasta file can contain multiple
sequences.

3. Set the parameters as required via the "CyDotian.config" file

User Notice:

When the sequence is a DNA, the valid parameters are DNA_Matrix, mode, identityThr, and
repeatLen.

When the sequence is an amino acid, the valid parameters are aminoAcidMatrix, mode,
similarityThr, and repeatLen.

Parameters Descriptions
fileType=0 #0 for DNA, 1 for amino acid.

#0 for BLAST matrix, 1 for Transition-transversion matrix - only

DNA_Matrix=0
valid for DNA.

#0 for BLOSUMA45, 1 for BLOSUMG62, 2 for BLOSUMSO, 3 for
aminoAcidMatrix=1 BLOSUMO9O0, 4 for PAM30, 5 for PAM70, 6 for PAM250 - only valid
for amino acid.

#0 for direct repeat, 1 for inverted repeat,
mode=0,1 #2 for reverse complement - only valid for DNA, suitable for
inferring reverse complement of RNA.

#ldentity threshold, indicating that only results greater than or
identityThr=0.85 equal to this threshold are output - only valid in the case of
DNA.

#Similarity threshold, indicating that only results greater than or
similarityThr=0.85 equal to this threshold are output - only valid in the case of
amino acid.

#A threshold for repeat or similar fragment length, indicating
repeatLen=6 that only results greater than or equal to this threshold will be
output.

Start
1. Check sequences for illegal characters

e Command

$ python3 1.0_batch_check_sequence.py -f 0 -s test_DNA

af://n75
af://n80
af://n109
af://n110

Parameters Descriptions

-f Input sequence type, 0 for DNA, 1 for amino acid
-S Input the path to the sequence folder
-h Show this help message

If you see the following message in the terminal, the sequence can be analysed by
CyDotian.

Congratulations, your file "*.fasta' can be analyzed by CyDotian!

Congratulations, your file "*.fasta' can be analyzed by CyDotian!

Congratulations, the script worked and finished successfully!
The program running time: *hour(s) *minute(s) *second(s).
2. Batch run CyDotian

e Command

$ python3 1.1 batch_run_CyDotian.py -c Cybotian.config -s test_DNA -o
test_DNA_result

Parameters Descriptions

-C Input the path to the "CyDotian.config" file
-S Input the path to the sequence folder

-0 Output folder path

-h Show this help message

If you see an output message like this, it means that your sequence has been successfully
analysed. Each fasta format file corresponds to one paragraph of the following output
message.

For 'positions’,

This fasta file with * sequences has a total of * failures and * successes this time!

If a successful ID appears in 'failure_sequences.txt', the number result after deleting the
position file corresponding to this ID is:

This fasta file with * sequences has a total of * failures and * successes this time!

For 'positions_original’,

This fasta file with * sequences has a total of * failures and * successes this time!

If a successful ID appears in 'failure_sequences.txt', the number result after deleting the
position file corresponding to this ID is:

This fasta file with * sequences has a total of * failures and * successes this time!

For 'positions' and 'positions_original', the sum of this number of successes and failures is
correct!

af://n128
af://n134
af://n155

For 'positions' and 'positions_original', the sum of this number of successes and failures and the
ID is correct!

Congratulations, the script worked and finished successfully!
The program running time: *hour(s) *minute(s) *second(s).

User Notice:
For a fasta format file,

The files with the duplicate results removed are placed in the "positions" folder and the original
result files are placed in the "positions_original" folder. That is, the internal repeat position files in
the "positons_original" directory can be used to draw symmetrical dotplots, depth maps and
calculate repetition densities.

the names and lengths of the failed sequences are recorded in the "failed_sequences.txt" file in
the "positions" folder.

The reason for the failure of each sequence analysis is logged in the
"failure_sequences_error_log.txt" file in the "positions" folder.

The parameter information and the description of the result file are logged in a "log.txt" file in
the "positions" folder.

The names of sequences containing repeats greater than the repeatLen threshold length are
recorded in the "sequence_names_*.txt" file in the "positions" folder.

The names and lengths of all sequences in the fasta format file are recorded in the
"all_sequences_length.txt" file in the "positions_original" folder.

The position result files are available in two types, direct and inverted repeat.

If the sequence is DNA, the result file can include the reverse complement results.

The file "name_positions_direct.txt" is the result of the direct repeat of the name sequence.
The file "name_positions_inverted.txt" is the result of the inverted repeat of name sequence.

The file "name_positions_reverse_complement.txt" is the result of the reverse complement of
the namesequence.
e Description of position results
Start1: the starting position of the vertical sequence in the dotplot.
End1: the end position of the vertical sequence in the dotplot.
Start2: the starting position of the horizontal sequence in the dotplot.
End2: the end position of the horizontal sequence in the dotplot.
Length: the length of the repeat fragment.
Identity: identity.
Mismatch: number of mismatches.
Similarity: similarity, which appears only when the input sequence is an amino acid.

Score: comparison score.

Start1 End1 Start2 End2 Length Identity Mismatch Similarity Score

146 342 348 544 197 0.827411 34 0.934010 862
140 151 502 513 12 0.250000 9 0.916667 18
140 151 300 311 12 0.250000 9 0.916667 18
20 29 98 107 10 0.400000 6 0.900000 23
76 85 84 93 10 0.500000 5 0.900000 30

Note: the result file is tab-separated and output in descending order of length.
3. Batch plotting of dotplots

e Command

$ python3 1.2_batch_run_draw_dotpTlot.py -1 10 -r test_DNA_result

Parameters Descriptions

Input a repeat length threshold, i.e. the minimum repeat length you want to

draw
-r Input the path to the results folder generated from step 2
-h Show this help message

If you see the following message in your terminal, your program has finished running
correctly.

Congratulations, the script worked and finished successfully!
The program running time: *hour(s) *minute(s) *second(s).

User Notice:

The script will automatically create a folder called "positions_original_dotplots" in the directory
where the "positions_original" folder is located and store all the results in this folder.

The file name of the location where the drawing failed is reiscorded in the "failure_files.txt" file
in the "positions_original_dotplots" folder.

The parameter information is logged in a "log.txt" file in the "positions_original_dotplots" folder.

The file "name_direct.pdf/png" is a dotplot of the direct repeat results of the name sequence, as
follows.

The file "name_inverted.pdf/png" is a dotplot of the inverted repeat results of the name
sequence, as follows.

af://n257
af://n275

4. Batch plotting of depth maps

e Command

$ python3 1.3_batch_run_draw_depth_plot.py -1 10 -r test_DNA_result

Parameters Descriptions

Input a repeat length threshold, i.e. the minimum repeat length you want to

analyze
-r Input the path to the results folder generated from step 2
-h Show this help message

If you see the following message in your terminal, your program has finished running
correctly.

Congratulations, the script worked and finished successfully!
The program running time: *hour(s) *minute(s) *second(s).

User Notice:

The script will automatically create a folder called "positions_original_depths" in the directory
where the "positions_original" folder is located and store all the results in this folder.

The file name of the location where the drawing failed is reiscorded in the "failure_files.txt" file
in the "positions_original_depths" folder.

The parameter information is logged in a "log.txt" file in the "positions_original_depths" folder.
The "name_direct_depths.txt" file is a count of the depths of the direct repeat results dotplots.

The "name_inverted_depths.txt" file is a count of the depths of the inverted repeat results
dotplots.

The "name_depth.pdf/png" file is a depth map of the internal repeat dotplots of the name
sequence, with the bars above the 0 scale (blue) being the direct repeat depth map and the bars
below the 0 scale (red) being the inverted repeat depth map, as follows.

5. Batch calculation of repetitive density

e Command

$ python3 1.4_batch_run_output_repeat_density.py -1 10 -r test_DNA_result

Parameters Descriptions

Input a repeat length threshold, i.e. the minimum repeat length you want to
analyze

-r Input the path to the results folder generated from step 2

-h Show this help message

af://n284
af://n302
af://n312

If you see the following message in your terminal, your program has finished running
correctly.

Congratulations, the script worked and finished successfully!
The program running time: *hour(s) *minute(s) *second(s).

User Notice:

The script will automatically create a folder called "positions_original_densities" in the directory
where the "positions_original" folder is located and store all the results in this folder.

The names of the failed sequences are recorded in the "failure_files.txt" file in the
"positions_original_densities" folder.

The parameter information is logged in a "log.txt" file in the "positions_original_densities"
folder.

For a fasta format file,

The direct repetition density of all sequences in this file is recorded in the "fasta format file
name_direct_densities" file, as follows.

Name Direct repetition density
u08401.1 0.000019
U08403.1 0.000016

The inverted repetition density of all sequences in this file is recorded in the "fasta format file
name_inverted_densities" file, as follows.

Name Inverted repetition density
u08401.1 0.000020
U08403.1 0.000016

Total repetition density of all sequences in this file is recorded in the "fasta format file
name_total_densities" file, as follows.

Name Total repetition density
U08401.1 0.000039
U08403.1 0.000032

Note: Slice a sequence into the different sequence regions that the user wants to compare,
store them as different fasta format files, run CyDotian again following the process above, and
finally plot the density result file as a graph that can be used to compare the repetition of
different regions of the same sequence by the repetition density index. See, for example, this
literature.

af://n330
https://doi.org/10.1071/FP21319

6. Batch extraction of repetitive sequences

e Command

$ python3 1.5_batch_extract_repeat_sequences.py -1 10 -r test_DNA_result -s
test_DNA

Parameters Descriptions

Input a repeat length threshold, i.e. the minimum repeat length you want to

analyze
-r Input the path to the results folder generated from step 2
-s Input the path to the sequence folder from step 1
-h Show this help message

If you see the following message in your terminal, your program has finished running
correctly.

Congratulations, the script worked and finished successfully!
The program running time: *hour(s) *minute(s) *second(s).

User Notice:

The script will automatically create a folder called "positions_repeat_sequences" in the directory
where the "positions" folder is located and store all the results in this folder.

The names of the failed sequences are recorded in the "failure_files.txt" file in the
"positions_repeat_sequences" folder.

The parameter information is logged in a "log.txt" file in the "positions_repeat_sequences"
folder.

The "name_direct_repeat_sequences.txt" file is the result of a direct repeat sequence within a
name sequence, as follows.

af://n371
af://n392

Start1 End1 Start2 End2 Length Identity Mismatch Score
652 664 679 691 13 0.923077 1 56
vertical

ATCAAGTACGCCG #Vertical sequence in dotplot

ATCGAGTACGCCG #horizontal sequence in dotplot

horizontal

675 684 1038 1047 10 1.000000 0 50
vertical

CGCCATCGAG

CGCCATCGAG

horizontal

Note: The numbers in this file are interpreted as in the position file in step 2, and if the
sequence type is amino acid, then there will be a column of Similarity results between Mismatch
and Score.

The "name_inverted_repeat_sequences.txt" file is the result of a inverted repeat sequence
within a name sequence. The results are interpreted as in the
"name_direct_repeat_sequences.txt" file.

The "name_reverse_complement_sequences.txt" file is the result of a reverse complement
sequence within a name sequence. This is only possible if the sequences analysed are of the DNA
type. The results are interpreted as in the "name_direct_repeat_sequences.txt" file.

7. Extract all results for a subset of the sequence

First, prepare a subset names file for the target fasta format file, for example, the following
example "subset_names.txt" file.

namel
name2

e Command

$ python3 1.6_Extract_the_corresponding_results_by_name.py -n subset_names.txt -
r ./test_DNA_result/CyDotian_example_DNA.fasta -o
CyDotian_example_DNA.fasta_result

af://n529

Parameters

-h

Descriptions

Input the path to a subset file of sequence names for a target fasta format
file

Input the path to the folder with the same name as the corresponding fasta
format file in the results folder generated in step 2

Output folder path

Show this help message

If you see the following message in your terminal, your program has finished running

correctly.

Congratulations, the script worked and finished successfully!
The program running time: *hour(s) *minute(s) *second(s).

User Notice:

The script will automatically create the folder directory specified after the -o parameter.

Be sure to provide the corresponding subset name file and the target fasta format file.

8. Batch comparison of sequences in two fasta format files

e Command

$ python3 1.7_batch_run_Cybotian_in_pairwise_comparison_mode.py -c
CyDotian.config -v ./test_DNA/CyDotian_example_DNA.fasta -1
./test_DNA/Ath_exampTle_DNA2.fasta -o pairwise_comparison_result

Parameters

-C

-V

-0

-h

Descriptions
Input the path to the "CyDotian.config" file
Input the path to the fasta format file in the vertical direction in the dotplot

Input the path to the fasta format file in the horizontal direction in the
dotplot

Output folder path

Show this help message

If you see the following message in your terminal, your program has finished running

correctly.

Congratulations, the script worked and finished successfully!
The program running time: *hour(s) *minute(s) *second(s).

User Notice:

The script will automatically create the folder directory specified after the -o parameter.

Be sure to provide the corresponding subset name file and the target fasta format file.

af://n552
af://n557
af://n581

A total of two folders named "positions_original" and "positions_original_dotplots" will be
created in the results folder. All position results will be placed in the "positions_original" folder
and all dotplot results will be placed in the "positions_original_dotplots" folder.

The names of the two compared sequences are concatenated into one result name using "VS",
the left one representing the vertical sequence name and the right one representing the
horizontal sequence name.

All result files are interpreted as above.
9. Batch extraction of similar sequences of two sequences

e Command

$ python3 1.8_batch_extract_repeat_sequences_in_pairwise_comparison_mode.py -1
10 -r pairwise_comparison_result -sl ./test_DNA/CyDotian_example_DNA.fasta -s2
./test_DNA/Ath_exampTle_DNA2.fasta

Parameters Descriptions

Input a similar sequence length threshold, i.e. the minimum similar
sequence length you want to analyze

-r Input the path to the results folder generated from step 8

Enter the path to the fasta format file from step 8 in the vertical direction of

-s1
the dot plot

< Enter the path to the fasta format file from step 8 in the horizontal direction
of the dot plot

-h Show this help message

If you see the following message in your terminal, your program has finished running
correctly.

Congratulations, the script worked and finished successfully!
The program running time: *hour(s) *minute(s) *second(s).

User Notice:

The script will automatically create a folder called "positions_original_similar_sequences" in the
directory "pairwise_comparison_result".

Be sure to provide the corresponding subset name file and the target fasta format file.

The names of the two compared sequences are concatenated into one result name using "VS",
the left one representing the vertical sequence name and the right one representing the
horizontal sequence name.

All result files are interpreted as above.

af://n590
af://n614

10. Batch execution consistent with the results of MUMmer's repeat-match

To achieve exactly the same results as MUMer's repeat-match and batch-processing them, the
steps are the same as those for running the CyDotian algorithm in batch.

You simply need to use “CyDotian_exact_match.config” instead of “CyDotian.config” and set the
parameters in that configuration file. Since MUMmer's repeat-match algorithm only recognizes
perfect repeats, the key parameter is repeatLen.

And replace the script "1.1_batch_run_CyDotian.py" with
"2.1_batch_run_CyDotian_exact_match.py".

For batch analysis of comparisons between two different sequences, replace
“1.7_batch_run_CyDotian_in_pairwise_comparison_mode.py” with
“2.7_batch_run_CyDotian_exact_match_in_pairwise_comparison_mode.py".

11. Batch processing of biological sequences via sliding window approach

To realize the batch for sequence comparison through the sliding window principle, the
operation steps are the same as the batch run CyDotian algorithm steps.

You simply need to use "CyDotian_sliding_window.config" instead of "CyDotian.config" and set
the parameters in that configuration file. The key parameters are ideSimThr and windowsSize
depending on the sliding window reason.

And replace script "1.1_batch_run_CyDotian.py" with
"3.1_batch_run_CyDotian_sliding_window.py" and "1.2_batch_run_draw_dotplot.py" with
"3.3_batch_run_draw_dotplot_sliding_window.py".

For "1.3_batch_run_draw_depth_plot.py", "1.4_batch_run_output_repeat_density.py",
"1.5_batch_ extract_repeat_sequences.py" and,
"1.8_batch_extract_repeat_sequences_in_pairwise_comparison_mode.py ", are not available in this
mode.

For batch analysis of comparison between two different sequences, use
"3.2_batch_run_CyDotian_sliding_window_in_pairwise_comparison_mode.py" instead of "
1.7_batch_run_CyDotian_in_pairwise_comparison_mode.py".

Note:

If the user sees the following output statement: "Congratulations, the script worked and finished
successfully!", it means that all of the user's sequences were successfully analysed.

If the user sees the following output statement: "Sadly, the script did not complete properly,
please check the output log, resolve the problem, and try again!", the user has failed some or all
of the sequence analysis. At this time, you can view the output message "If a successful ID
appears in 'failure_sequences.txt', the number result after deleting the position file corresponding
to this ID is:

This fasta file with [number] sequences has a total of [number] failures and [number] successes
this time!", if the sum of the number of failed sequences and the number of successful sequences
is equal to the total number of sequences entered by the user. Then the output of the user is
normal. On the contrary, it is not normal.

af://n621
af://n626
af://n633

In any case, as long as the last line of the output information is "The program running time:
[number]hour(s) [number]minute(s) [number]second(s).", it means that the Python script run by
the user has been executed normally.

	CyDotian’s manual
	Overview
	The following is the list of executable programs:
	Parameter configuration file
	Batch processing programs:
	Citation:

	Documentation
	Dependencies
	Installation
	Open a terminal and follow the steps below to enter the command.
	Manually download the "CyDotian" package
	Put "CyDotian.zip" into the newly created folder "CyDotian". Then enter the following command.
	Or, if your server is available, you can use the following command. Instead of downloading it manually.
	If you see the following result output in the terminal, the installation is successful.

	Tutorial
	Preparation
	Start
	1. Check sequences for illegal characters
	If you see the following message in the terminal, the sequence can be analysed by CyDotian.

	2. Batch run CyDotian
	If you see an output message like this, it means that your sequence has been successfully analysed. Each fasta format file corresponds to one paragraph of the following output message.

	3. Batch plotting of dotplots
	If you see the following message in your terminal, your program has finished running correctly.

	4. Batch plotting of depth maps
	If you see the following message in your terminal, your program has finished running correctly.

	5. Batch calculation of repetitive density
	If you see the following message in your terminal, your program has finished running correctly.

	6. Batch extraction of repetitive sequences
	If you see the following message in your terminal, your program has finished running correctly.

	7. Extract all results for a subset of the sequence
	If you see the following message in your terminal, your program has finished running correctly.

	8. Batch comparison of sequences in two fasta format files
	If you see the following message in your terminal, your program has finished running correctly.

	9. Batch extraction of similar sequences of two sequences
	If you see the following message in your terminal, your program has finished running correctly.

	10. Batch execution consistent with the results of MUMmer's repeat-match
	11. Batch processing of biological sequences via sliding window approach

	Note:

